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ABSTRACT 
Cellular automata (CA) have been prevalently used for the simula
tion of urban land change. However, how to effectively learn the 
spatial-temporal dynamics of urban development from time-series 
data remain an important challenge for CA-based models. To 
address this issue, we propose a new model for the simulation of 
urban development based on convolutional long short-term 
memory (ConvLSTM) neural networks. The core of the proposed 
model is a sequence of vanilla ConvLSTM cells integrated with 
the modules of channel attention and contextual embedding. 
Compared with conventional CA-based models, the proposed 
ConvLSTM model is more advanced in that it can better leverage 
the open access annual urban land maps to capture simultan
eously the spatial structure and the temporal dependency of his
torical urban development, and further predict multiple maps of 
annual development for subsequent years (i.e., Maps-to-Maps). 
The performance of the ConvLSTM model is evaluated through 
the case studies in China’s three mega-urban regions, and 
ConvLSTM outperforms other state-of-the-art deep learning archi
tectures at both the pixel level and the coarser grid level. The 
results also suggest the satisfactory transferability of ConvLSTM in 
that the model trained in one mega-urban region can be success
fully re-used in others without fine tuning.
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1. Introduction

Urban land expansion is the direct outcome of urbanization. Globally, population 
growth was found the major driver of urban land expansion during 1970-2014, while 
the importance of Gross Domestic Product growth became greater after 2000 (Mahtta 
et al. 2022). Due to its far-reaching impacts, such as arable land losses (Sumbo et al. 
2023), biodiversity declines (Simkin et al. 2022), and urban heat island effects 
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(Chatterjee and Majumdar 2022), researchers have been devoting their efforts to the 
modeling of urban land change. Many studies focus on mapping urban land change 
through remotely sensed imagery and advanced detection methods (Aslam et al. 
2023). In particular, the power of cloud computing has been exploited along with the 
increasing volume of satellite images to generate urban land maps that are globally 
covered, high-resolution, and annually available over a long span of time (Liu et al. 
2020, Huang et al. 2022, Zhou et al. 2018, Gong et al. 2020). These data products are 
fundamental to the development of urban land change models, which have been con
sidered helpful for understanding the associated impacts of urban land expansion at 
various regions and scales (Chen et al. 2020, Tong and Feng 2020, Gao and O’Neill 
2020, Zhang et al. 2023b).

Many of the contemporary urban land change models are developed based on cel
lular automata (CA) because of their ability to simulate spatial phenomena with simple 
mechanisms (D’Acci and Batty 2019). When CA are applied to the simulation of urban 
land change, the major components of a CA-based model usually include a module to 
evaluate development suitability considering a set of spatial variables (or driving fac
tors), a neighborhood component to model the local interaction between neighboring 
land units, and a stochastic component to account for the effects of unpredictable 
perturbation (Roodposhti et al. 2020). How these components operate is controlled by 
the mechanisms represented in the form of either if-then rules or functions that can 
be calibrated using spatial data. A variety of methods have been proposed for model 
calibration. They range from geostatistical methods (Gao et al. 2020), heuristic meth
ods (Cao et al. 2019, Modiri et al. 2023), tree-based algorithms (Shafizadeh-Moghadam 
et al. 2021), to the more recent deep learning methods such as convolutional neural 
networks (CNN) (Zhai et al. 2020, Wang et al. 2022, Guan et al. 2023).

Despite the different calibration methods applied, most of the contemporary CA- 
based models are calibrated using a pair of urban land maps at two points in time: 
the initial T0 and the ending T1 at which some change has occurred, and validated 
using the urban land map at T2 (e.g. Addae and Dragi�cevi�c (2022)). A few models are 
calibrated using only the T0 urban land map, such as FLUS (Liu et al. 2017). Therefore, 
the calibration methods used in these models merely captures the spatial dynamics 
underlying the process of urban land expansion, but fail to interpret the (spatial-)tem
poral information from multi-temporal or time-series urban land maps. This is not triv
ial because ignoring the temporal dimension would cause misunderstanding of the 
process of urban land expansion and reduce the reliability of the long-run projections 
of urban land change (Li et al. 2021).

To address this issue, several methods have been developed to incorporate multi- 
temporal or time-series urban land data for model calibration. For instance, Chen et al. 
(2016) used survival analysis to capture the temporal trend of the spatial variables’ 
effects by incorporating four urban land maps with an interval of five years. The major 
weakness of their approach is that only the constant trend over time (i.e., increase or 
decrease) can be obtained, neglecting the potential temporal fluctuations. Li et al. 
(2020) proposed to adjust the neighborhood component of a Logistic-CA model by 
assigning higher weights for the neighboring cells that were developed closer to pre
sent time. However, the weights were determined mainly based on expert knowledge 
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and difficult to calibrate with empirical data. Yang et al. (2023) focused on delineating 
the spatial-temporal trend of urban land demand with a isotropic Gaussian function, 
but ignored the spatial-temporal information associated with the neighbourhood com
ponent and the spatial variables, which is inherent in time-series urban land data. 
Overall, the representative studies mentioned above cannot fully address the chal
lenge of capturing the spatial-temporal dynamics of urban land expansion.

More recently, deep learning methods have emerged as a new approach for model
ing urban land expansion with multi-temporal or time-series data. For instance, Qian 
et al. (2020) developed a CNN-based method to learn the effects of spatial variables 
on urban land expansion from multi-temporal urban land maps through convolution 
operations. Geng et al. (2022) adopted the similar approach but only three urban land 
maps were used with an interval of five years. Despite the use of multi-temporal data 
in Qian et al. (2020) and Geng et al. (2022), they were only stacked as the input while 
the temporal relationships of the data could not be effectively captured, because the 
architecture of CNN lacks a component to do that. Another approach of deep learning, 
namely long short-term memory (LSTM) (Graves 2012), had demonstrated promising 
performance in the tasks of sequence prediction, hence it is applicable to the spatial- 
temporal modeling of long-run urban land change. Despite the success of LSTM in 
many fields, such as natural language processing (Merity et al. 2018) and financial mar
ket forecasting (Moghar and Hamiche 2020), the development of LSTM-based models 
for simulating urban land change are still at its infancy. Liu et al. (2021) applied the 
LSTM method for the simulation of urban expansion, but the power of LSTM could 
not be fully exploited because only three urban land maps (with an interval of ten 
years) were used. Xing et al. (2020) combined CNN and LSTM (i.e., CNN-LSTM) to 
develop a CA-based simulation model of urban development, in which the CNN com
ponent is for learning the effects of spatial variables and the LSTM component is for 
learning the temporal relationships from the input time-series urban land maps. A 
similar CNN-LSTM-CA model was also developed by Zhou et al. (2023).

This study proposes a new model for the simulation of urban land expansion based 
on the method of convolutional long short-term memory (ConvLSTM) (Shi et al. 2015). 
ConvLSTM extends the conventional LSTM methods by including the convolutional 
operations for encoding spatial-temporal information and making prediction. 
Therefore, compared with the conventional CNN-LSTM method that capture the spatial 
information and the temporal information using two separating networks (i.e., CNN 
and LSTM, respectively), ConvLSTM has a more concise architecture that can learn and 
fuse the spatial-temporal information in the same network (Masrur and Yu 2023). 
Moreover, unlike the conventional LSTM methods that only yield the prediction at one 
step ahead, ConvLSTM allows for outputting a sequence of future results (i.e., multiple 
timesteps). All these characteristics make ConvLSTM more suitable than the conven
tional methods to the challenging simulation of long-run urban land change.

In this study, we further enhance ConvLSTM with the modules of channel attention 
(Woo et al. 2018) and contextual embedding (Chai et al. 2022). Because of its concise
ness and efficiency, channel attention has been widely used for weighting the impor
tance of features learned by deep learning models (Cai and Chen 2021). Therefore, we 
use channel attention to enhance the ability of the original ConvLSTM to estimate the 
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effects of spatial variables. Contextual embedding, however, is originally designed to 
improve the contextual interactions when applying LSTM to solve the problems of 
spatial-temporal prediction (Chai et al. 2022), and hence is feasible to combine with 
ConvLSTM for simulating urban land expansion. By this means, the simulation model 
uses a sequence of urban land maps as the input and yields a sequence of predicted 
urban land maps as the output (i.e., a Maps-to-Maps manner). The proposed 
ConvLSTM model was evaluated and compared with several other models through the 
simulations of urban land expansion in China’s Guangdong-Hong Kong-Macau Great 
Bay Area (GBA). The transferability of the ConvLSTM model was also examined 
through additional experiments of simulations for Yangtze River Delta (YRD) and 
Beijing-Tianjin-Tangshan (BTT).

2. Materials and methods

2.1. Study areas and data

The mega-urban regions of GBA, YRD, and BTT have the highest economic and polit
ical status in China, and are considered in the Fourteenth Five-Year Plan as the key 
regions for China’s long-run development. During the past three decades, however, 
the rapid expansion of urban land in these three mega-urban regions has caused the 
increasing pressure on natural resources and environments. Therefore, accurate simula
tion of urban development in these regions is not only useful to understand the his
torical urban dynamics but also important to explore the consequences of future 
development. In this study, the performance of the proposed model is first evaluated 
using the GBA data, and the geographic transferability of the proposed model is fur
ther assessed using the collective data of all three mega-urban regions.

The urban land maps of the study area were obtained from the 30-m raster dataset 
of global impervious surface area (GISA 2.0) (Huang et al. 2022). This dataset was 
developed based on the global Landsat images spanning from 1985 to 2019, and pro
vides annual urban land cover with higher accuracy than other 30-m datasets. In this 
study, the annual urban land maps of the study areas during the periods of 2000-2017 
were used for the GBA simulation and the evaluation of transferability. Specifically, the 
2000-2005 maps were used to trained the proposed model to produce the simulated 
2006-2011 maps, and the independent 2012-2017 maps were used to evaluate the 
performance of the trained model in terms of prediction.

Besides the urban land maps, the data of DEM, road networks, urban facility, and 
the positions of representative urban centers were also used. The DEM data was 
derived from the recently released Forest and Buildings removed Copernicus DEM 
(FABDEM) with a spatial resolution of 30 m (Hawker et al. 2022). The road networks 
data was collected from OpenStreetMap, which provides the major roads of the study 
areas. The urban facility considered include airports, railway stations, and accesses to 
highways. The representative urban centers include county centers and town centers. 
Data of urban facility and representative urban centers were acquired by digitalizing 
the official maps of the study area. With these data, several spatial variables were gen
erated, including slope, distance to the nearest major road, distance to the nearest air
port, distance to the nearest railway station, distance to the nearest access to 
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highways, distance to the nearest county center, and distance to the nearest town 
center. All these spatial variables represent the situation of year 2020 and have a 30-m 
resolution. The selection of these variables is aligned with those in previous studies 
(Chen et al. 2019b, Rienow et al. 2021, Roodposhti et al. 2020). Note that the spatial 
variables are held constant throughout the simulation of annual urban growth. Such a 
treatment is indeed a compromise due to the lack of multi-temporal urban facility and 
road network data. Recent studies also applied constant spatial variables for urban 
simulation using multi-temporal or time-series urban land maps (Wang et al. 2022, 
Zhou et al. 2023, Qian et al. 2020).

2.2. Methods

2.2.1. Overview of the model structure
The proposed model simulates urban development through a Maps-to-Maps manner. 
This means that the model receives multiple, annually consecutive urban land maps 
for years T1, … , Tn as the inputs and outputs a sequence of annually consecutive 
urban land maps for the future years Tnþ1, … , Tnþm. To fulfil this approach, a 
ConvLSTM neural network integrated with the modules of channel attention and con
textual embedding is developed using a set of spatial variables (Table 1). Specifically, 
the network is composed of a sequence of ConvLSTM cells, each of which is a vanilla 
ConvLSTM cell (Shi et al. 2015) (see Section 2.2.4) enhanced by channel attention 
(Woo et al. 2018) and contextual embedding (Chai et al. 2022) (see Section 2.2.2 and 
2.2.3, respectively) (Figure 2). The number of the ConvLSTM cells that compose the 
model is nþm - 1, where n refers to the number of input years and m is the number 
of output years.

For the first n ConvLSTM cells, they are used for learning the spatial-temporal 
dynamics of urban land expansion for the years T1, … , Tn. Specifically, the first 
ConvLSTM cell receives the data tile X1 as its input to generate the cell state c1 and 
the hidden state h1. Here X1 is the spatial subset (64� 64 or 1.92 km � 1.92 km) of the 
urban land map and the spatial variables, while c1 and h1 refer to the long-term and 
the short-term memories, respectively (Yu et al. 2019) (see Section 2.2.4). The resulting 
c1 and h1 along with the data tile X2 are used as the input of the second ConvLSTM 
cell to generate c2 and h2, and so forth until the nth ConvLSTM cell. The resulting hn 

of the nth ConvLSTM cell is regarded as the probability of urban land development 
(referred to as probability tile for short) at the year Tnþ1, which is further used (instead 
of the urban land map at the year Tnþ1) with the spatial variables to compose the 
data tile Xnþ1 for the next ConvLSTM cell (nþ 1). The (nþ 1)th ConvLSTM cell runs in 

Table 1. Spatial variables used for simulating urban land expansion.
Spatial variable Abbreviations Source data

Slope Slope FABDEM
Distance to the nearest road D2NR OpenStreetMap
Distance to the nearest airport D2A Official maps
Distance to the nearest railway station D2RS
Distance to the nearest access to highway D2H
Distance to the nearest county center D2C
Distance to the nearest town center D2T
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Figure 1. Urban land expansion in the Guangdong-Hong Kong-Macau Great Bay Area (GBA), 
Yangtze River Delta (YRD), and Beijing-Tianjin-Tangshan (BTT) from 2000 to 2017.

Figure 2. The structure of the ConvLSTM neural network for predicting urban land expansion.
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the same way to generate cnþ1 and hnþ1 (as the probability tile at the year Tnþ2), and 
so on until the (nþm - 1)th cell, which outputs the probability tile at the year Tnþm. 
Finally, with the resulting probability tiles, urban development for the years Tnþ1, … , 
Tnþm can be simulated by the means of, for example, value-based segmentation (see 
Section 2.2.5).

Figure 3 demonstrates the details of a ConvLSTM cell. As aforementioned, a 
ConvLSTM cell is created based on the integration of the vanilla ConvLSTM cell and 
the modules of channel attention and contextual embedding. Here the channel atten
tion module is used to capture the effects of each spatial variable, while the context
ual embedding model is used to infer where urban development would be most likely 
to occur. The processing within a ConvLSTM cell can be summarized as follows:

CXt ¼ ChA Xtð Þ (1) 

CX 0t , h0t−1 ¼ CE CXt , ht−1ð Þ (2) 

ht , ct ¼ VConvLSTM CX 0t , h0t−1, ct−1
� �

(3) 

where ChA(), CE(), and VConvLSTM() correspond to the operations of the channel atten
tion module, the contextual embedding module, and the vanilla ConvLSTM cell. 
Specifically, the data tile Xt at the year Tt passes through the channel attention mod
ule, generating the output CXt. The resulting CXt along with ht-1 become the input of 
the contextual embedding, and the corresponding outputs along with ct-1 are used to 
generate ct and ht based on the operation of the vanilla ConvLSTM cell. The details of 
the calculations are discussed in the following sections 2.2.2-2.2.4.

With the annual urban land maps and the spatial variables, the ConvLSTM model is 
first trained to simulate the annual urban development for the period of 2006-2011 
with the actual 2000-2005 data as the input. After that the trained model is further 
evaluated through its prediction of the annual urban development for the period of 
2012-2017 with the actual 2006-2011 data as the input. Therefore, the number of 
ConvLSTM cells is 11 (i.e., n¼m¼ 6). Note that the values of six for both n and m is 
set considering the balance between the amount of spatial-temporal data used by the 
model and the computation costs. When n is set with greater values, more years of 
data can be utilized by the model and hence richer spatial-temporal information 
acquired, but in turn the computation costs would increase. Similarly, when m is set 
with greater values, more computation time is required to produce the simulations. 
Also, there is no need to always set n and m equal.

Figure 3. The structure of the proposed ConvLSTM cell.
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2.2.2. Channel attention module
The channel attention module consists of three components: the global max pooling 
operation, the global average pooling operation, and the shared weight multi-layer 
perceptron (MLP) (Woo et al. 2018). Here a channel refers to a specific component of 
the input data tile (e.g. the urban land map or a certain spatial variable). The purpose 
of using the channel attention module is to capture the importance of each compo
nent in the input data tile Xt and output its weighted form CXt. Figure 4 depicts the 
workflow of the channel attention module. The input data tile Xt, which is also called 
the input feature map, is first transformed separately by the operations of global max 
pooling and global average pooling:

mpi ¼ maxðchanneliÞ (4) 

api ¼ averageðchanneliÞ (5) 

Vmax ¼ ½mp1, mp2, . . . , mpkþ1� (6) 

Vavg ¼ ½ap1, ap2, . . . , apkþ1� (7) 

where channeli refers to the ith channel of Xt, and mpi and api are the respective 
results of the global max pooling and the global average pooling for channeli. By this 
means, the input data tile Xt with (1þ k) channels (including the urban land map and 
k spatial variables) is transformed to two vectors (Vmax and Vavg) of size 1� 1 � (1þ k).

After the operations of global max pooling and global average pooling, the result
ing vectors Vmax and Vavg are used as the inputs to train a shared weight MLP to pre
dict urban development at the year tþ 1. This is for obtaining the weights that 
represent the importance of each channel of Xt. The shared weight MLP consists of 
three fully connected layers l1, l2, and l3 with the corresponding sizes of 1� 1 �
(1þ k), 1� 1 � 1, and 1� 1 � (1þ k). The parameters to optimize include the weight 
vector W and the bias vector b. The back-propagation method to update the two 
parameters is based on the gradients derived from the difference between the model 
outputs and the observed urban land maps. It should be noted that the back propa
gation only starts after the forward propagation stages are finished in all ConvLSTM 
cells’ MLPs. More details of such a training approach can be found in Woo et al. 
(2018). After that the weights for Vmax and Vavg are calculated as follows:

Wmax ¼ rðW3r W2r W1Vmax þ b1ð Þ þ b2ð Þ þ b3Þ (8) 

Wavg ¼ rðW3r W2r W1Vavg þ b1
� �

þ b2
� �

þ b3Þ (9) 

where W1, W2, and W3 are the optimized weights in l1, l2, and l3, and b1, b2, and b3 

are the optimized bias in l1, l2, and l3; and r() is a sigmoid activation function. The 

Figure 4. The workflow of the channel attention module.
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resulting Wmax and Wavg are then combined as a single weight vector WX through the 
following calculation:

WX ¼ r Wmax þWavgð Þ (10) 

Finally, the input data tile Xt is then weighted through the calculation of Hadamard 
product:

CXt ¼ weight � Xt (11) 

2.2.3. Contextual embedding module
This module (Chai et al. 2022) is used to obtain the contextual information that favors 
the prediction of urban land expansion using the weighted data tile CXt and ht – 1. 
The structure of the contextual embedding module is shown in Figure 5(a). The major 
components of this module are the two convolutional layers that process the input 
CXt and ht – 1. By this means, the module can capture the interaction between CXt and 
ht – 1, which is useful to enhance the model’s performance in sequence prediction 
(Melis et al. 2019).

Specifically, the input ht – 1 passes through the first convolutional layer Convh 

and is further transformed by using a sigmoid activation function, yielding the output 
ht – 1, conv:

ht−1, conv ¼ r Wh, conv�ht−1 þ bh, convð Þ (12) 

where Wh, conv and bh, conv are the convolution kernel and bias, respectively. The result
ing ht – 1,conv is then combined with the input CXt through the calculation of 
Hadamard product, and the results are further used as the input of the second convo
lutional layer ConvX to generate h0t−1:

CX 0t ¼ ht−1, conv � CXt (13) 

h0t−1 ¼ r WX , conv�CX 0t þ bX , conv
� �

� ht−1 (14) 

where WX, conv and bX, conv refer to the kernel and bias, respectively, for ConvX. The 
training processes to update Wh, conv, WX, conv, bh, conv, and bX, conv are similar to that of 
the shared weight MLP. See Chai et al (2022) for more details.

Figure 5. The structures of (a) the contextual embedding module and (b) the vanilla ConvLSTM 
cell.
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2.2.4. Vanilla ConvLSTM cell
The vanilla ConvLSTM cell receives the outputs of the contextual embedding module, 
based on which the cell state ct and the hidden state ht are generated for the current 
cell (Figure 5(b)). The vanilla ConvLSTM cell consists of four gates that work sequen
tially. They include a forget gate, two input gates, and an output gate (Yu et al. 2019). 
All these gates are developed using convolutional layers. Specifically, the forget gate 
determines how much information obtained from the previous ConvLSTM cell should 
be discarded:

ft ¼ rðWf� h0t−1, CX 0t
� �

þ bf Þ (15) 

where ft represents the proportion of information to discard, Wf and bf are the convo
lutional kernel and the bias for the convolutional layer Convf. With the information of 
the previous ConvLSTM cell being adjusted by ft, the cell state of the current cell ct - 1 

is then updated through:

ct ¼ ft � ct−1 þ it � gt (16) 

it ¼ r Wi� h0t−1, CX 0t
� �

þ bi
� �

(17) 

gt ¼ tanh Wg� h0t−1, CX 0t
� �

þ bg
� �

(18) 

where it and gt are the outputs of the two input gates; Wi and bi are the convolutional 
kernels and bias for Convi, and Wg and bg are the convolutional kernels and bias for 
Convg. Here the two input gates are used to generate the information that is used to 
replace the discarded one with the input CX 0t and h0t−1:

Finally, an output gate is implemented to produce the hidden state of the current 
cell ht using the input and the resulting ct:

ot ¼ r Wo� h0t−1, CX 0t
� �

þ bo
� �

(19) 

ht ¼ ot � tanh ctð Þ (20) 

where ot is the result of the output gate; Wo and bo are the convolutional kernels and 
bias for Convo.

2.2.5. Simulation of urban development
The direct outputs of the ConvLSTM model are the annual probability tiles for the 
years Tnþ1, … , Tnþm. Before the simulation of urban development, for each year T, 
the resulting probability tiles are merged together to form the complete spatial 
layer of urban development probability. Then the value-based segmentation 
approach (Feng and Tong 2020, Guan et al. 2023) is used to determine the pixels 
that are developed at the year T. Specifically, for the year T, the non-urban pixels 
prohibited to develop (e.g., ecologically sensitive areas) are removed. In our case, 
open water and land units with slope values greater than 25 degrees are consid
ered as ecologically sensitive areas that are not allowed for development. The 
probability values of the remaining non-urban pixels are then adjusted by random 
perturbation:

Pi, adj ¼ Pi � ð1þ ð� lnðcÞÞ (21) 
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where c is a randomly generated value ranging from 0 to 1. The incorporation of the 
random perturbantion is to represent the unpredictable impacts of certain stochastic 
factors on urban development (Roodposhti et al. 2020).

After that the set of non-urban cells at the year T are ranked in descending order 
according to Pi, adj, denoting as NT, P. With the number of new urban pixels ST being 
determined for the year T, the first ST pixels are selected from NT, P as the newly devel
oped urban pixels. An identical simulation process is applied for the year Tþ 1 and so 
forth for the remaining years. For the simulation of historical urban land expansion, 
the values of ST for each year are set according to the actual annual urban land maps. 
It should be noted that besides the value-based segmentation approach, others such 
as the patch-based simulation strategy (Chen 2022) are also feasible to use based on 
the resulting probability layers. Nevertheless, we only applied the value-based seg
mentation approach because testing different simulation methods is not the focus of 
this study.

The simulations can be validated based on the frequently used indicator of ‘Figure- 
of-Merit’ (FoM) (Pontius Jr 2018), which measures the performance of the model in 
accurately predicting the position of change. Higher values of FoM suggest the better 
performance of the model under examined. The calculation of FoM is based on the 
pixel-by-pixel map comparison between the referenced change and the simulated 
change from T0 to T1.

Furthermore, the agreements between the referenced change and the simulated 
change can also be compared at coarser scales to tolerate the model’s prediction error 
at the pixel level. The comparison is made by aggregating the amounts of the refer
enced change and the simulated change to the units that are larger than individual 
pixels, such as moving windows. In this study, we used the moving windows of 1.5 km 
� 1.5 km, 3 km � 3 km, and 6 km � 6 km to produce the focal sum of newly devel
oped urban land for the references and the simulations, respectively. Regression ana
lysis was then run to reveal how much the simulated change can explain the 
referenced change. Such a moving-window analysis is a variant of the prevalently 
used map comparison methods (Hagen-Zanker 2006, Meentemeyer et al. 2013, 
Pijanowski et al. 2014) that complement the pixel-by-pixel validation methods with 
the information of agreement between the simulated and the referenced local com
position of land changes.

3. Implementation and results

The proposed model is tested through the simulation of historical urban development 
in the GBA during 2012-2017. Furthermore, the proposed model is compared against 
three additional models, namely FLUS, LSTM-CA, and CNN-LSTM-CA. FLUS (Liu et al. 
2017) features the use of artificial neural networks to estimate development probabil
ity, but lacking the ability to handle time series urban land maps. LSTM-CA and CNN- 
LSTM-CA are developed more recently and represent the current trend of using deep 
learning techniques to enhance urban CA models with time-series data.

Specifically, LSTM-CA is developed based on the algorithm of LSTM (Staudemeyer 
and Morris 2019) and focuses on detecting the temporal trend of urban development 
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at the pixel level, considering the sequential states (i.e., the land use type) along the 
timeline and the effects of spatial variables. CNN-LSTM-CA is developed following the 
architecture proposed by Xing et al. (2020). Indeed, CNN-LSTM-CA is composed of two 
neural networks, i.e., a CNN and a LSTM network, or can be considered as a LSTM-CA 
model enhanced by adding a CNN. Here CNN is for estimating the effects of spatial 
variables at the neighborhood level with the neighborhood size equal to that of the 
kernels used for convolution. By this means, the spatial information learned by CNN is 
further combined with the temporal trend captured by LSTM to generate the develop
ment probability. Compared with CNN-LSTM-CA, the proposed ConvLSTM model is dif
ferent in that the convolution operations are embedded directly in the ConvLSTM cells 
rather than implemented in a separating network as CNN-LSTM-CA does. In that sense, 
ConvLSTM can simultaneously learn spatial-temporal information from data in the 
same network. Given such differences, which architecture performs better in the simu
lation of urban land expansion can be identified through experiments (see 
Section 3.2).

Section 3.1 explains the training of the ConvLSTM model, while Section 3.2 dis
cusses the differences of performance among different models. Finally, the transferabil
ity of the ConvLSTM model is assessed through the simulations of urban development 
in another two mega-urban regions, namely YRD and BTT, besides the GBA 
(Section 3.3).

3.1. Settings of model training

The ConvLSTM model was first trained to simulate the urban development during 
2006-2011 by using the information of 2000-2005. A total of 6000 data tiles were col
lected, with 5000 tiles as the training set and the remaining 1000 tiles as the testing 
set. The initial learning rate was set as 5� 10−5. The loss function of mean-squared- 
error and the AdamW optimizer were adopted. The batch size was set as eight, and 
the number of epochs was set as 50. The teacher forcing strategy was also used to 
facilitate the training process with the value of teacher forced samples decays per 
epoch being 1.5% (Yang and Liu 2020). The training of the ConvLSTM model was 
implemented using a single NVIDIA RTX 4090 GPU and PyTorch 1.10.

3.2. Model performance and comparison

We first trained several models to evaluate the influence of the kernel size. We tested 
the kernel sizes of 3� 3, 5� 5, 7� 7, and 9� 9, and the results were only marginally 
different (Supplementary Table S1). To balance the performance and computation 
costs, we chose the kernel size of 5 because the results were already satisfactory.

The proposed ConvLSTM model was compared against FLUS, LSTM-CA, and CNN- 
LSTM-CA. Due to the differences of model structure, the data used for calibration for 
these three models are different. For FLUS, only the 2011 data was used, while for 
LSTM-CA and CNN-LSTM-CA, the data for the years 2005, 2006, 2007, 2008, 2009, 
2010, and 2011 were used. The FoM values for FLUS, LSTM-CA, CNN-LSTM-CA, and the 
ConvLSTM model are summarized in Table 2. It should be noted that the base year 

12 Z. ZHOU ET AL.

https://doi.org/10.1080/13658816.2023.2298296


(T0) for the calculation of FoM is 2011 for all simulations. The results clearly show that 
FLUS attains smaller FoM values than the other three models, suggesting that without 
the input of time-series urban land maps, the simulation models are less successful to 
capture the actual dynamics of urban land expansion. The LSTM-CA model is capable 
of learning temporal information from time-series urban land maps, and hence 
achieves greater FoM values than FLUS by approximately 1-3%. CNN-LSTM-CA further 
improves the FoM values by 1-2% as compared against those of LSTM-CA for the years 
2014-2017. The proposed ConvLSTM model, however, achieves the highest FoM values 
throughout the entire timeline of simulations, which are even 5%-12% more than 
those of CNN-LSTM-CA. This could be owing to the more advanced architecture of 
ConvLSTM that can fuse the spatial-temporal information in the same network.

We also carried out additional experiments to test whether the choice of periods 
for model training and running would affect the performance. In those experiments, 
we trained the ConvLSTM model with the annual urban land maps for the years 1998- 
2009 and used it to predict the annual urban land expansion for the subsequent dec
ade (i.e., 2010-2019). The FoM values of the 2010-2019 simulations are provided in 
Supplementary Table S2. The results suggest that ConvLSTM again significantly outper
form FLUS, LSTM-CA, and CNN-LSTM-CA. Therefore, the choice of periods (n) for model 
training and the number of time steps (m) for prediction do not affect the better per
formance of the ConvLSTM model, as compared with the other models.

Figure 6 shows the results of map comparison between the referenced and the 
simulated urban land expansion from 2011 to 2017 for the four models. An evident 
difference can be observed between the results of ConvLSTM and the others. That is, 
the results of ConvLSTM demonstrate more mixture of hits (i.e., pixels referenced 
changed and simulated changed), misses (i.e., pixels referenced changed and simu
lated unchanged), and false alarms (i.e., pixels referenced unchanged and simulated 
changed), as highlighted by the cyan dashed circles in Figure 6. These results imply 
that although the ConvLSTM model cannot always predict the precise locations of 
change, the predictions are already close to where the referenced change occur. For 
the other three models, however, the misses and the false alarms are more likely to 
repel each other. In other words, if the four models are evaluated at coarser scales, 
better agreements would still be observed in the results of ConvLSTM rather than in 
those of the other three models.

This is confirmed by Figure 7, which shows the comparison between the amounts of 
simulated and referenced new urban land during 2012-2017. They were obtained by 
using the focal sum operation with a moving window of 1.5 km � 1.5 km. At such a 
scale, FLUS can explain only 46% of the referenced new urban land, while LSTM-CA and 

Table 2. FoM values for the models of FLUS, LSTM-CA, CNN-LSTM-CA and ConvLSTM in the simu
lations of urban land expansion from 2012 to 2017.
Model 2012 2013 2014 2015 2016 2017

FLUS 0.0390 0.0681 0.0887 0.1075 0.1215 0.1338
LSTM-CA 0.0716 0.1025 0.1169 0.1284 0.1336 0.1421
CNN-LSTM-CA 0.0609 0.1017 0.1258 0.1459 0.1589 0.1646
ConvLSTM 0.1771 0.1985 0.2076 0.2140 0.2186 0.2162

Note: The 2011 urban land map is used as the base year data. For instance, the FoM for year 2016 is the FoM calcu
lated based on the simulated change and the referenced change from 2011 to 2016.
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CNN-LSTM-CA perform better than FLUS with the explanatory power of 59% and 55%, 
respectively. For these three models, the histograms clearly demonstrate large disparities 
between the distributions of the simulated and the referenced new urban land (Figure 
7). By contrast, the ConvLSTM model not only has greater explanatory power (70%), but 

Figure 6. Spatial distributions of hits and errors of the simulated urban land expansion from 2011 
to 2017.
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also generates a distribution closer to the referenced one, as compared with those 
yielded by FLUS, LSTM-CA, and CNN-LSTM-CA. Similar analysis was also conducted using 
the moving windows of 3 km � 3 km (Supplementary Figure S1) and 6 km � 6 km 
(Supplementary Figure S2). Despite the improvements of R2 and distribution agreements 
for all models due to upscaling, the ConvLSTM model (R2 ¼ 0.80 and 0.87, respectively) 
still outperforms FLUS (R2 ¼ 0.61 and 0.71, respectively), LSTM-CA (R2 ¼ 0.73 and 0.83, 
respectively), and CNN-LSTM-CA (R2 ¼ 0.69 and 0.82, respectively).

For the proposed ConvLSTM model, the module of channel attention allows for 
understanding the importance of each spatial variable in the form of vectors. We 
exported and transformed the vectors to spatial data, and the results are shown in 
Supplementary Figure S4. The mean values of importance reflect that D2T (0.71), D2H 
(0.62), and D2RS (0.61) are the most influential spatial variables, suggesting that prox
imity to local urban centers and important infrastructure (e.g. highways and railway 
stations) are the major factors of urban land expansion in the GBA. Slope and D2NR 
(0.57 and 0.56, respectively) are ranked the 4th and 5th important spatial variables, 
while D2A and D2C (0.46 and 0.45, respectively) are the least important ones.

3.3. Geographic transferability

Although the proposed ConvLSTM model performs better than the urban CA models, 
the computation costs of deploying and training ConvLSTM are relatively high. 
Therefore, for saving the computation costs, it is more desirable if the model trained 
in one geographic region can be reused in another region. This largely depends on 
the transferability of the ConvLSTM model. To evaluate the transferability, we con
ducted several experiments in which the ConvLSTM model is trained using the data of 
a certain mega-urban region and applied in all three mega-urban regions.

Specifically, the ConvLSTM model is first trained separately using the data of GBA, 
YRD, and BTT. For convenience, the resulting models are referred to as the GBA model, 
the YRD model, and the BTT model. These three models are consistently trained using 
the data of 2000-2011, of which the 2000-2005 data are used as input to simulate the 

Figure 7. Comparing the simulated and the referenced urban land expansion at the scale of 
1.5 km (Sample size ¼ 10000).
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urban development in the period of 2006-2011. The number of tiles is 6000, with 5000 
tiles for training and 1000 tiles for testing. After that the trained models are directly 
applied to the simulations in all three mega-urban regions. For example, the GBA model 
is applied to the simulations in both YRD and BTT besides the GBA, and so forth for the 
YRD model and the BTT model. All simulations are validated using the FoM indicator, of 
which the results form a 3� 3 matrix for every year from 2012 to 2017 (Figure 8).

The results show that the models trained by local data perform slightly better than 
the ones transferred directly from the other two mega-urban regions. The spatial pat
terns generated by the three models are also similar (Figure 9). For the same mega- 
urban region, the simulations yielded by the three models show high agreements, as 
revealed by Figure 10. For the GBA case, land units (i.e., pixels) where at least two mod
els predict new development account for over 61% of the total land units of predicted 
change. This proportion is even higher in the cases of YRD and BTT, both of which are 
67%. Notably, the proportions of pixels that the three models consistently predict new 
development are the highest in all three cases, which are 38.0% for GBA, 43.1% for YRD, 
and 45.9% for BTT. These results suggest that without any fine-tunings or modifications, 
the proposed ConvLSTM model trained in one mega-urban region still can work reason
ably well in other mega-urban regions. This could be related to the similar dynamics of 
urbanization in the three selected mega-urban regions so that the information learned 
in one mega-urban region can be immediately used in the others.

3.4. Ablation experiments

Ablation experiments were conducted to demonstrate the effectiveness of the compo
nents used to form the proposed ConvLSTM model. The experiments used all three 

Figure 8. FoM values of the ConvLSTM models in different experiments.
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sets of urban data for GBA, YRD, and BTT to compare the performance of four models. 
They include the basic model with only the vanilla ConvLSTM cells (MVan), the basic 
model combined with the component of contextual embedding (MVanþCE), the basic 
model combined with the component of channel attention (MVanþChA), and the com
plete form of the proposed ConvLSTM model (Mcomplete). Table 3 summarizes the FoM 
values for the simulation of urban land expansion from 2012 to 2017, yielded by the 
four models under comparison. The results suggest that complementing the basic 
model with the component of contextual embedding consistently improves the simu
lation accuracy in all three cases of experiments. By contrast, the influence of adding 
only the component of channel attention to the basic model varies across different 
experiments, in which the simulation accuracy reduces in the case of BTT. If both the 
components of contextual embedding and channel attention are added, however, the 
simulation accuracy can further improve as compared with MVanþCE. Therefore, the 
ablation experiments confirm the effectiveness of the proposed ConvLSTM model.

4. Discussion

The results of the case study in the GBA reveal the significant improvements of simu
lation accuracy for models that are capable of learning spatial-temporal information 

Figure 9. Representative examples of the urban land expansion simulations from 2011 to 2017 
generated by the transferred ConvLSTM models.
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Figure 10. Agreement among the simulations yielded by the GBA model, the YRD model, and the 
BTT model.

Table 3. FoM values of the ablation experiments using the GBA, YRD, and BTT data.
Region Year MVan MVanþCE MVanþChA Mcomplete

GBA 2012 0.1697 0.1752 0.1714 0.1771
2013 0.1944 0.1960 0.1945 0.1985
2014 0.2037 0.2046 0.2032 0.2076
2015 0.2087 0.2095 0.2114 0.2140
2016 0.2124 0.2127 0.2157 0.2186
2017 0.2088 0.2105 0.2128 0.2162

YRD 2012 0.1821 0.1880 0.1801 0.1900
2013 0.2055 0.2091 0.2053 0.2113
2014 0.2166 0.2211 0.2183 0.2239
2015 0.2241 0.2310 0.2285 0.2344
2016 0.2294 0.2377 0.2363 0.2422
2017 0.2286 0.2355 0.2384 0.2412

BTT 2012 0.1855 0.1934 0.1878 0.1966
2013 0.2066 0.2101 0.2060 0.2124
2014 0.2156 0.2181 0.2141 0.2201
2015 0.2207 0.2228 0.2187 0.2248
2016 0.2250 0.2268 0.2238 0.2295
2017 0.2217 0.2244 0.2228 0.2277
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from time-series urban land maps, such as LSTM-CA, CNN-LSTM-CA, and ConvLSTM. 
Compared with CNN-LSTM-CA, which uses two separating networks of CNN and LSTM 
to learn separately the spatial and temporal information from data, the ConvLSTM 
model embeds the convolution operation to each of the vanilla ConvLSTM cells and 
hence can simultaneously obtain the spatial and temporal information from data in 
the same network. The results of model comparison clearly show that ConvLSTM sig
nificantly outperforms CNN-LSTM-CA by 5%-12% in terms of FoM (Table 2), confirming 
the effectiveness of the proposed architecture.

Moreover, the proposed ConvLSTM presents a distinct way for modeling urban land 
expansion. Conventional CA-based urban simulation models are developed based on 
the idea of self-organizing, and operate by iterating the constant local rules that spe
cify how neighborhood interaction and spatial variables affect urban land change 
(Tobler 1979, Phipps 1989). An important issue in conventional CA-based models is 
how to align the iterations to the actual time. Most of the existing studies, if not all, 
use a compromised representation of temporal dimension with a fixed value of iter
ation count, which is defined according to some constraints such as land demand. 
Due to such a technical implementation, the effect of path-dependence arises and 
becomes one of the sources of simulation errors (Brown et al. 2005).

Additionally, in conventional CA-based urban simulation models, neighborhood 
interaction is often represented in the form of development density (i.e., counting the 
number of land units that are developed within a given neighborhood), and the 
neighboring land units are either equally weighted or weighted by the distance from 
the neighborhood center (or its variants) (Wang et al. 2021, Roodposhti et al. 2020, 
Liao et al. 2016, Zhang et al. 2023a). It is questionable to use the traditional one-fits-all 
density calculation to represent the neighborhood interaction in different spatial 
contexts.

For the proposed ConvLSTM model, however, the temporal dimension is explicit 
and matches the actual timeline. In this study, we had used ConvLSTM to process 
the annual urban land maps and make prediction annually. Building upon this fea
ture, the spatial-temporal relationships between urban land data can be learnt and 
implicitly represented by ConvLSTM. In particular, the multiple convolution opera
tions in ConvLSTM have two major advantages over traditional representation of 
neighborhood interaction: First, compared with the traditional uniform calculation of 
neighborhood development density, the multiple convolution operations are more 
advanced because it can inexplicitly capture the different aspects of neighborhood 
interaction in addition to development density. Second, the contributions of neigh
bors (i.e., the weights of the kernels; see Section 2.2.4) are directly learnt from time- 
series urban land maps and hence more reliable than using the traditional equal 
weights or distance-adjusted weights that are manually defined a priori. 
Nevertheless, compared with the traditional density calculation, the multiple convo
lutions are less intuitive to understand how neighborhood interaction affects urban 
development.

Another notable feature of the ConvLSTM model is its promising transferability 
among the selected mega-urban regions, as shown by Figures 8-10. Nevertheless, the 
examination of transferability for the ConvLSTM model is still a preliminary analysis at 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 19



the current stage. More cases of modeling should be considered in future study, par
ticularly those small- and medium-size urbanized areas in different countries. 
Moreover, the proposed ConvLSTM model still cannot effectively addressed the issue 
of enclave simulations (see Supplementary Figure S3), which is important for modeling 
urban growth in fast developing regions. The integration of ConvLSTM and a patch- 
based simulation approach (Chen et al. 2019a, Yang et al. 2023) perhaps can alleviate 
this problem, which can be fulfilled in future studies. Finally, it is feasible to use the 
ConvLSTM model to provide finer-resolution (e.g. 30 m) projections of future urban 
development at the global scale, thereby facilitating the understanding of global 
change and its impacts.

5. Conclusions

This study proposes a novel ConvLSTM model for the simulation of urban land 
expansion based on the integration of channel attention, contextual embedding, 
and vanilla ConvLSTM cells. Compared with conventional CA-based models, the 
proposed model is more advanced in that it can better leverage the open access 
annual urban land maps to learn simultaneously the spatial structure and the tem
poral dependency of historical urban development, and further generate the 
annual predictions of future development for multiple years, i.e., a Maps-to-Maps 
manner.

The results of the case study in the GBA show that the ConvLSTM model outper
forms several state-of-the-art urban CA models, including FLUS, LSTM-CA, and CNN- 
LSTM-CA. Compared with these models, ConvLSTM features the highest agreements at 
the pixel-level and the grid-levels with the resolutions ranging from 1.5 km to 6 km. 
Furthermore, the ConvLSTM model also shows satisfactory transferability. The experi
ments in the mega-urban regions of GBA, YRD, and BTT indicate that the ConvLSTM 
model trained in one mega-urban region can be conveniently applied in the other 
two without further tuning. Future studies will enhance the examination of the mod
el’s transferability by increasing the diversity of case study areas (e.g. urban areas with 
different sizes and geographic contexts), and extend the applications of the model to 
wider fields such as global change.
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